API documentation
Module to parse and store data from electronic structure calculations. Contains the parent class Calculation to store data from a variety of sources. Contains the child class AimsCalculation to read and store data from a FHI-aims calculation.
AimsCalculation
Bases: Calculation
Class for parsing and storing data from a FHI-AIMS total energy calculation.
Example:
BaS_calc = AimsCalculation("./aims_output/output.aims")
Attributes:
volume (float): volume of the periodic unit cell in Angstrom^3
filepath (str): path to the calculation output files
energy (float): DFT total energy in eV
xc (str): XC functional used to calculate the total energy
NAtoms (int): number of atoms in the periodic unit cell
Source code in thermopot/calculations.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
__init__(filepath='./calculation.out', gas=False)
Args:
filepath (str): path to the calculation output files
gas (bool): True if gas species, False otherwise
Note:
If gas is True then volume is None
Source code in thermopot/calculations.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
|
get_NAtoms()
Returns:
(int): number of atoms in the periodic unit cell
Source code in thermopot/calculations.py
145 146 147 148 149 150 151 152 153 154 |
|
get_energy()
Returns:
(float): DFT total energy in eV
Source code in thermopot/calculations.py
123 124 125 126 127 128 129 130 131 132 133 134 |
|
get_volume()
Returns:
(float): volume of the periodic unit cell in Angstrom^3
Source code in thermopot/calculations.py
112 113 114 115 116 117 118 119 120 121 |
|
get_xc()
Returns:
(str): XC functional used to calculate the total energy
Source code in thermopot/calculations.py
136 137 138 139 140 141 142 143 |
|
Calculation
Parent class for parsing and storing data from electronic structure calculations.
Example:
BaS_calc = Calculation(volume=63.2552, energy=-235926.586148547, xc='pbesol', NAtoms=2)
Attributes:
volume (float): volume of the periodic unit cell in Angstrom^3
filepath (str): path to the calculation output files
energy (float): DFT total energy in eV
xc (str): XC functional used to calculate the total energy
NAtoms (int): number of atoms in the periodic unit cell
Note:
If gas is True then no volume attribute is required.
Source code in thermopot/calculations.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
|
__init__(energy=None, xc=None, NAtoms=None, volume=None, filepath=None, gas=False)
Note:
All attributes are None until set by derived classes or specified by user.
Args:
volume (float): volume of the periodic unit cell in Angstrom^3
filepath (str, optional): path to the calculation output files
energy (float): DFT total energy in eV
xc (str): XC functional used to calculate the total energy
NAtoms (int): number of atoms in the periodic unit cell
gas (bool): True if gas species, False otherwise
Note:
If gas is True then volume is None
Source code in thermopot/calculations.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
|
check_attributes()
Check that the Calculation class attributes make basic sense.
Source code in thermopot/calculations.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
|
Module contains the classes Sulfur_model, Solid and IdealGas to store basic material data. Each class provides methods for calculating various thermodynamic properties.
IdealGas
Bases: Material
Class for ideal gas properties.
Example:
S2_gas = materials.IdealGas("S2", {"S":2}, "./thermo_data/S2",calculation=S2_gas_calc)
Attributes:
name (str): Identifying string stoichiometry (dict): relates element to the number of atoms in a single formula unit thermo_dile (str): path to the thermodynamics data calculation (thermopot.calculation.Calculation, optional): instance of the thermopot.calculation.Calculation class energies (dict, optional): relates xc functional to DFT total energy in eV zpe_pbesol (float, optional): zero point energy calculated using the pbesol XC-functional zpe_hse06 (float, optional): zero point energy calculated using the hse06 XC-functional zpe_lit (float, optional): zero point energy calculated using literature values
Note:
Ideal gas law PV=nRT is applied: specifically (dH/dP) at const. T = 0 and int(mu)^P2_P1 dP = kTln(P2/P1).
Enthalpy has no P dependence as volume is not restricted / expansion step is defined as isothermal
Source code in thermopot/materials.py
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
|
H(T, xc='pbesol', units='eV')
Calculates the Enthalpy of one formula unit of ideal gas.
Examples:
H = S2_gas.H(300,xc="pbesol",units="eV")
H = S2_gas.H(np.linspace(100,700,1000))
Args:
T (float/ndarray): 1D Numpy array containing temperature data (in Kelvin) as floats, or a single temperature as a float.
xc (str, optional): DFT XC functional used to calculate the ground state energy
units (str, optional): specifies the units as "eV", "J" (J/mol) or "kJ" (kJ/mol)
Returns:
H (float/ndarray): 1D Numpy array (with the same dimensions as T) containing the enthalpy of one formula unit of gas, or a single enthalpy float when a single temperature is passed as an argument.
Source code in thermopot/materials.py
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
|
U(T, xc='pbesol', units='eV')
Calculates the internal energy of one formula unit of ideal gas.
Example:
U = S2_gas.U(300,xc="pbesol",units="eV")
Args:
T (float/ndarray): 1D Numpy array containing temperature data (in Kelvin) as floats, or a single temperature as a float.
xc (str, optional): DFT XC functional used to calculate the ground state energy
units (str, optional): specifies the units as "eV", "J" (J/mol) or "kJ" (kJ/mol)
Returns:
U (float/ndarray): 1D Numpy array (with the same dimensions as T) containing the internal energies of one formula unit of gas, or a single internal energy float when a single temperature is passed as an argument.
Source code in thermopot/materials.py
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
|
__init__(name, stoichiometry, thermo_file, calculation=False, energies=False, zpe_pbesol=0, zpe_hse06=0, zpe_lit=0)
Args:
name (str): Identifying string stoichiometry (dict): relates element to the number of atoms in a single formula unit thermo_dile (str): path to the thermodynamics data calculation (thermopot.calculation.Calculation, optional): instance of the thermopot.calculation.Calculation class energies (dict, optional): relates xc functional to DFT total energy in eV zpe_pbesol (float, optional): zero point energy calculated using the pbesol XC-functional zpe_hse06 (float, optional): zero point energy calculated using the hse06 XC-functional zpe_lit (float, optional): zero point energy calculated using literature values
Source code in thermopot/materials.py
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
|
mu(T, P, xc='pbesol', units='eV')
Calculates the Gibbs Free Energy of one formula unit of ideal gas.
Examples:
mu = S2_gas.mu(300,xc="pbesol",units="eV")
mu = S2_gas.mu(np.linspace(100,700,1000))
Args:
T (float/ndarray): 1D Numpy array containing temperature data (in Kelvin) as floats, or a single temperature as a float.
P (float/ndarray): 2D Numpy array with a single row containing pressure data (in Pa) as floats, or a single pressure as a float.
xc (str, optional): DFT XC functional used to calculate the ground state energy
units (str, optional): specifies the units as "eV", "J" (J/mol) or "kJ" (kJ/mol)
Note:
T, P are orthogonal 2D arrays of length m and n, populated in one row/column: in this case mu is an m x n matrix.
Other T, P arrays will result in undefined behaviour.
Returns:
mu (float/ndarray): Gibbs Free Energy of one formula unit of ideal gas expressed as floats in a m x n Numpy array where T, P are orthogonal 2D arrays of length m and n
Source code in thermopot/materials.py
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
|
Material
Bases: object
Parent class for storing materials properties.
Attributes:
name (str): Identifying string
stoichiometry (dict): relates element to the number of atoms in a single formula unit
energies (dict): relates xc functional to DFT total energy in eV
N (int): number of atoms per formula unit
Source code in thermopot/materials.py
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
Solid
Bases: Material
Class for solid material data.
Note:
The material is assumed to be incompressible and without thermal expansion.
Example:
BaS = Solid('BaS',{'Ba':1,'S':1},"./phonon_data/Ba_S",calculation=BaS_calc)
Attributes:
name (str): Identifying string
stoichiometry (dict): relates element to the number of atoms in a single formula unit
energies (dict): relates xc functional to DFT total energy in eV
N (int): number of atoms per formula unit
fu_cell (int): number of formula units in periodic unit cell
volume (float): volume of unit cell in Angstroms^3
phonon_filepath (str): path to the phonon output data
NAtoms (int): number of atoms in periodic unit cell
Source code in thermopot/materials.py
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
|
Cv(T, units='kB')
Calculates the Constant-volume heat capacity of one formula unit of solid.
Examples:
Cv = BaS.mu(300,xc="pbesol",units="eV")
Cv = BaS.mu(np.linspace(100,700,1000),xc="pbesol",units="kJ")
Args:
T (float/ndarray): 1D Numpy array containing temperature data (in Kelvin) as floats, or a single temperature as a float.
xc (str, optional): DFT XC functional used to calculate the ground state energy
units (str, optional): specifies the units as "eV", "J" (J/mol) or "kJ" (kJ/mol)
Returns:
Cv (float/ndarray): 1D Numpy array (with the same dimensions as T) containing the Constant-volume heat capacity of one formula unit of solid, or a single heat capacity float when a single temperature is passed as an argument.
Source code in thermopot/materials.py
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
|
H(T, P, xc='pbesol', units='eV')
Calculates the Enthalpy (H = U + PV) of one formula unit of solid.
Examples:
H = BaS.H(300,1E3,xc="pbesol",units="eV")
H = BaS.H(np.linspace(100,700,1000),np.array(np.logspace(1, 7, 100),ndmin=2).transpose())
Args:
T (float/ndarray): 1D Numpy array containing temperature data (in Kelvin) as floats, or a single temperature as a float.
P (float/ndarray): 2D Numpy array with a single row containing pressure data (in Pa) as floats, or a single pressure as a float.
xc (str, optional): DFT XC functional used to calculate the ground state energy
units (str, optional): specifies the units as "eV", "J" (J/mol) or "kJ" (kJ/mol)
Note:
T, P are orthogonal 2D arrays of length m and n, populated in one row/column: in this case H is an m x n matrix.
Other T, P arrays will result in undefined behaviour.
Returns:
H (float/ndarray): Enthalpy of one formula unit of solid expressed as floats in a m x n Numpy array where T, P are orthogonal 2D arrays of length m and n
Source code in thermopot/materials.py
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
|
U(T, xc='pbesol', units='eV')
Calculates the internal energy of one formula unit of solid.
Example:
U = BaS.U(300,xc="pbesol",units="eV")
Args:
T (float/ndarray): 1D Numpy array containing temperature data (in Kelvin) as floats, or a single temperature as a float.
xc (str, optional): DFT XC functional used to calculate the ground state energy
units (str, optional): specifies the units as "eV", "J" (J/mol) or "kJ" (kJ/mol)
Returns:
U (float/ndarray): 1D Numpy array (with the same dimensions as T) containing the internal energies of one formula unit of solid, or a single internal energy float when a single temperature is passed as an argument.
Source code in thermopot/materials.py
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
|
__init__(name, stoichiometry, phonon_filepath, calculation=False, volume=False, energies=False, NAtoms=1)
Args:
name (str): Identifying string stoichiometry (dict): relates element to the number of atoms in a single formula unit phonon_filepath (str): path to the phonon output data calculation (thermopot.calculation.Calculation, optional): instance of the thermopot.calculation.Calculation class volume (float, optional): volume of unit cell in Angstroms^3 energies (dict, optional): relates xc functional to DFT total energy in eV NAtoms (int): number of atoms in periodic unit cell
Source code in thermopot/materials.py
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
|
mu(T, P, xc='pbesol', units='eV')
Calculates the Gibbs Free Energy (mu = U + PV - TS) of one formula unit of solid.
Examples:
mu = BaS.mu(300,1E3,xc="pbesol",units="eV")
mu = BaS.mu(np.linspace(100,700,1000),np.array(np.logspace(1, 7, 100),ndmin=2).transpose())
Args:
T (float/ndarray): 1D Numpy array containing temperature data (in Kelvin) as floats, or a single temperature as a float.
P (float/ndarray): 2D Numpy array with a single row containing pressure data (in Pa) as floats, or a single pressure as a float.
xc (str, optional): DFT XC functional used to calculate the ground state energy
units (str, optional): specifies the units as "eV", "J" (J/mol) or "kJ" (kJ/mol)
Note:
T, P are orthogonal 2D arrays of length m and n, populated in one row/column: in this case mu is an m x n matrix.
Other T, P arrays will result in undefined behaviour.
Returns:
mu (float/ndarray): Gibbs Free Energy of one formula unit of solid expressed as floats in a m x n Numpy array where T, P are orthogonal 2D arrays of length m and n
Source code in thermopot/materials.py
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
|
Sulfur_model
Bases: object
Class with parameterised model for sulfur chemical potential. From work of Jackson et al, https://doi.org/10.1039/C5SC03088A. Region of validity is 400 - 1500 K, 10^0 - 10^7 Pa. You must provide a reference energy from e.g. a DFT total energy calculation.
Source code in thermopot/materials.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
mu(T, P, units='eV', xc=None)
Returns the chemical potential of one atom of Sulfur
Args:
T (float/ndarray): 1D Numpy array containing temperature data (in Kelvin) as floats, or a single temperature as a float.
P (float/ndarray): 2D Numpy array with a single row containing pressure data (in Pa) as floats, or a single pressure as a float.
Note:
T, P are orthogonal 2D arrays of length m and n, populated in one row/column: in this case mu is an m x n matrix.
Other T, P arrays will result in undefined behaviour.
Returns:
mu (float/ndarray): Chemical potential of one sulfur atom expressed as floats in a m x n Numpy array where T, P are orthogonal 2D arrays of length m and n
Source code in thermopot/materials.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
Reaction
Class for reaction data
Sets properties:
reaction.reactants (Dict relating reactant materials to a number of formula units) reaction.products (Dict relating product materials to a number of formular units)
Sets methods:
reaction.DH(T,P) : Enthalpy of formation reaction.DU(T,P) : Internal energy change reaction.Dmu(T,P) : Gibbs free energy of formation
Source code in thermopot/reactions.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|
__init__(reactants_dictionary, products_dictionary, temperature=298.15, pressure=100000.0, fu=1)
reactants_dictionary and products dictionary takes the form { class_instance : formula units }
and can have an arbitrary number of key-value pairs. Class instance
is an instance of the materials.solid
or materials.ideal_gas
classes.
temperature is provided in kelvin, pressure is provided in Pa.
fu is the number of formula units of the final reactant(s). It is used to scale the calculated changes in energy/enthalpy.
Source code in thermopot/reactions.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
|
Potential
Source code in thermopot/potential.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
plot_TvsP(potential_label='$\\Delta G_f$ / kJ mol$^{-1}$', scale_range=[-600, 0], precision='%d', T_units='K', P_units='Pa', log_scale=True)
T is an array e.g. np.linspace(100, 1500, 100) # K P is an array orthogonal to T. e.g. np.array(np.logspace(1, 7, 100), ndmin=2).transpose() # Pa potential is returned from a reactions.reaction method called for an instance with attributes T,P. If T has length m and P has length n, P will be a 2D array with dimensions m x n. e.g. reactions.reaction({Ba:1,S:2}, {BaS2:1}},temperature=T,pressure=P).Dmu_eV_pbesol() potential_label is the label of the contour colorbar e.g. '$\Delta G_f$ / kJ mol$^{-1}$' scale_range is the scale of the colorbar e.g. [-380, -240] logscale determines if the y-axis Pressure is logarithmic
Source code in thermopot/potential.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
Potentials
Source code in thermopot/potentials.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
|
plot_TvsP(material_labels=None, T_units='K', P_units='Pa', log_scale=True)
T is an array e.g. np.linspace(100, 1500, 100) # K P is an array orthogonal to T. e.g. np.array(np.logspace(1, 7, 100), ndmin=2).transpose() # Pa potential is returned from a reactions.reaction method called for an instance with attributes T,P. If T has length m and P has length n, P will be a 2D array with dimensions m x n. e.g. reactions.reaction({Ba:1,S:2}, {BaS2:1}},temperature=T,pressure=P).Dmu_eV_pbesol() potential_label is the label of the contour colorbar e.g. '$\Delta G_f$ / kJ mol$^{-1}$' scale_range is the scale of the colorbar e.g. [-380, -240] log_scale determines if the Pressure y-axis is logarithmic
Source code in thermopot/potentials.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
get_potential_aims(file, property)
Thermodynamic property interpolation function. Requires phonopy-FHI-aims output file. Reads data for S and Cv expressed in J/K/mol, F and U in kJ/mol, TS in J/mol. Outputs data for S and Cv in kB/cell, U, F and TS in eV/cell.
Source code in thermopot/interpolate.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
|
get_potential_nist_table(file, property)
Thermodynamic property interpolation function. Requires NIST-JANAF table. All properties in J, mol and K
Source code in thermopot/interpolate.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
|
get_potential_sulfur_table(filename)
Read thermodynamic property as function of T, P from datafile.
Datafile should be generated by the code at http://github.com/WMD-bath/sulfur-model or follow the same format
Source code in thermopot/interpolate.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|